Functional analysis of the Volvox carteri asymmetric division protein GlsA
نویسندگان
چکیده
The Zuotin-family J protein chaperone GlsA is essential for the asymmetric divisions that establish germ and somatic cell initials during embryogenesis in the green alga Volvox carteri, but it is not known on what cellular process GlsA acts to carry out this function. Most GlsA protein is nuclear, and GlsA possesses two SANT domains, suggesting that GlsA may function as a transcriptional regulator. On the other hand, close homologs from yeast and mice are ribosome-associated factors that regulate translation fidelity, implying GlsA might also regulate translation. Here we set out to gain additional evidence regarding the function of GlsA, specifically with respect to its possible involvement in transcription and translation. We found that like zuotin mutants, glsA mutants are ultrasensitive to both cold and to the ribosome-binding aminoglycoside antibiotic paromomycin, so some fraction of GlsA is likely to be ribosome associated. We also found that GlsA co-immunoprecipitates with histones and that this interaction is dependent on the presence of intact SANT domains. Through rescue experiments using transgenes that encode GlsA variants, we determined that the growth and asymmetric division defects of the glsA mutant are separable-a GlsA variant that rescued the growth defects did not completely rescue the asymmetric division phenotype. Considered in total, our results suggest that GlsA acts both at the level of translation and transcription, but the function that is essential for tolerance to paromomycin and cold is not sufficient for asymmetric cell division.
منابع مشابه
Control of Apoptosis by Asymmetric Cell Division
Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway invol...
متن کاملglsA, a Volvox gene required for asymmetric division and germ cell specification, encodes a chaperone-like protein.
The gls genes of Volvox are required for the asymmetric divisions that set apart cells of the germ and somatic lineages during embryogenesis. Here we used transposon tagging to clone glsA, and then showed that it is expressed maximally in asymmetrically dividing embryos, and that it encodes a 748-amino acid protein with two potential protein-binding domains. Site-directed mutagenesis of one of ...
متن کاملDarwin's dissenter
glsA gene product, which is required for asymmetric division, and the regA gene product, which is required for terminal differentiation of somatic cells. More recently, they have also been used to show that the invA gene encodes a novel kinesin that drives inversion. What can Volvox tell us about the evolutionary origins of multicellularity and cellular differentiation? The family Volvocaceae, ...
متن کاملSeeking the ultimate and proximate causes of volvox multicellularity and cellular differentiation.
Volvox and its relatives provide an exceptional model for integrative studies of the evolution of multicellularity and cellular differentiation. The volvocine algae range in complexity from unicellular Chlamydomonas through several colonial genera with a single cell type, to multicellular Volvox with its germ-soma division of labor. Within the monophyletic family Volvocaceae, several species of...
متن کاملA Preliminary Genetic Investigation of VOLVOX CARTERI.
A preliminary genetic analysis of a number of genetic variants of Volvox carteri f. nagariensis is presented. Techniques are outlined for mutagenesis of Volvox, isolation of mutants and routine genetic analysis. All of the mutants show simple Mendelian segregation patterns and have been tentatively placed in 14 linkage groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 126 شماره
صفحات -
تاریخ انتشار 2009